Bismuth subgallate, Fluocinolone acetonide, Lidocaine, Menthol
Indications
Bismuth subgallate, Fluocinolone acetonide, Lidocaine, Menthol is used for:
BISMUTH SUBGALLATE
It has been used to treat helicobacter pylori infection and is used in wound therapy. As an internal deodorant, it is commonly used by individuals who have had gastrointestinal stoma surgery, bariatric surgery, fecal incontinence, and irritable bowel syndrome
FLUOCINOLONE ACETONIDE
For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also for the treatment of chronic non-infectious uveitis affecting the posterior segment of the eye (retisert)
LIDOCAINE
For production of local or regional anesthesia by infiltration techniques such as percutaneous injection and intravenous regional anesthesia by peripheral nerve block techniques such as brachial plexus and intercostal and by central neural techniques such as lumbar and caudal epidural blocks
It has been used to treat helicobacter pylori infection and is used in wound therapy. As an internal deodorant, it is commonly used by individuals who have had gastrointestinal stoma surgery, bariatric surgery, fecal incontinence, and irritable bowel syndrome
FLUOCINOLONE ACETONIDE
For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also for the treatment of chronic non-infectious uveitis affecting the posterior segment of the eye (retisert)
LIDOCAINE
For production of local or regional anesthesia by infiltration techniques such as percutaneous injection and intravenous regional anesthesia by peripheral nerve block techniques such as brachial plexus and intercostal and by central neural techniques such as lumbar and caudal epidural blocks
Adult Dose
Child Dose
Renal Dose
Administration
Contra Indications
Precautions
Pregnancy-Lactation
Interactions
Adverse Effects
Side effects of Bismuth subgallate, Fluocinolone acetonide, Lidocaine, Menthol :
Mechanism of Action
FLUOCINOLONE ACETONIDE
Fluocinolone acetonide is a corticosteroid that binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (gre) in the promoter region of the target genes. The dna bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase a2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase a2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both cox-1 and cox-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation prostaglandins and leukotrienes are inhibited by the action of glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc. ) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver
LIDOCAINE
Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. Lidocaine alters signal conduction in neurons by blocking the fast voltage gated sodium (na+) channels in the neuronal cell membrane that are responsible for signal propagation. With sufficient blockage the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anaesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their birth in the first place
Fluocinolone acetonide is a corticosteroid that binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (gre) in the promoter region of the target genes. The dna bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase a2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase a2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both cox-1 and cox-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation prostaglandins and leukotrienes are inhibited by the action of glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc. ) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver
LIDOCAINE
Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action. Lidocaine alters signal conduction in neurons by blocking the fast voltage gated sodium (na+) channels in the neuronal cell membrane that are responsible for signal propagation. With sufficient blockage the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anaesthetic effect by not merely preventing pain signals from propagating to the brain but by aborting their birth in the first place